首页> 外文OA文献 >Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction
【2h】

Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction

机译:锂离子电池基电解质中低压二氧化碳的溶解度随温度的变化。测量与预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present in this study the effect of nature and concentration of lithium salt, such as the lithium hexafluorophosphate, LiPF6; lithium tris(pentafluoroethane)-trifluorurophosphate LiFAP; lithium bis(trifluoromethylsulfonyl)imide, LiTFSI, on the CO2 solubility in four electrolytes for lithium ion batteries based on pure solvent that include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), as well as, in the EC:DMC, EC:EMC and EC:DEC (50:50) wt.% binary mixtures as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility values, the Henry’s law constant of the carbon dioxide in these solutions with the presence or absence of lithium salt was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOThermX software. From this study, it appears that the addition of 1 mol · dm-3 LiPF6 salt in alkylcarbonate solvents decreases their CO2 capture capacity. By using the same experimental conditions, an opposite CO2 solubility trend was generally observed in the case of the addition of LiFAP or LiTFSI salts in these solutions. Additionally, in all solutions investigated during this work, the CO2 solubility is greater in electrolytes containing the LiFAP salt, followed by those based on the LiTFSI case. The precision and accuracy of the experimental data reported therein, which are close to (1 and 15)%, respectively. From the variation of the Henry’s law constant with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state were calculated. Finally, a quantitative analysis of the CO2 solubility evolution was carried out in the EC:DMC (50:50) wt.% binary mixture as the function of the LiPF6 or LiTFSI concentration in solution to elucidate how ionic species modify the CO2 solubility in alkylcarbonates-based Li-ion electrolytes by investigating the salting effects at T = 298.15 K and atmospheric pressure.
机译:我们在这项研究中介绍了锂盐(例如六氟磷酸锂LiPF6)的性质和浓度的影响;三(五氟乙烷)-三氟磷酸锂LiFAP;双(三氟甲基磺酰基)酰亚胺锂,LiTFSI,基于纯溶剂的锂离子电池四种电解质在二氧化碳中的溶解度,这些纯溶剂包括碳酸亚乙酯(EC),碳酸二甲酯(DMC),碳酸乙基甲基酯(EMC),碳酸二乙酯(DEC) ,以及在EC:DMC,EC:EMC和EC:DEC(50:50)wt。%二元混合物中,温度是(283-353)K和大气压的函数。根据实验的溶解度值,然后推导出存在或不存在锂盐的情况下这些溶液中二氧化碳的亨利定律常数,并将其与文献报道的值以及通过使用COSMO-RS方法预测的值进行比较。 COSMOThermX软件。从这项研究看来,在烷基碳酸酯溶剂中添加1 mol·dm-3 LiPF6盐会降低其CO2捕集能力。通过使用相同的实验条件,在这些溶液中添加LiFAP或LiTFSI盐的情况下,通常观察到相反的CO2溶解度趋势。此外,在这项工作期间研究的所有解决方案中,在含LiFAP盐的电解质中,其二氧化碳溶解度更高,其次是基于LiTFSI情况的电解质。其中报告的实验数据的准确性和准确性分别接近(1和15)%。根据亨利定律常数随温度的变化,计算了部分摩尔溶解热力学函数,例如标准吉布斯能量,焓和熵,以及在假定的液态下溶剂与CO2的混合焓。 。最后,根据溶液中LiPF6或LiTFSI浓度的函数,在EC:DMC(50:50)wt。%二元混合物中对CO2溶解度演变进行了定量分析,以阐明离子物质如何改变烷基碳酸酯中的CO2溶解度通过研究在T = 298.15 K和大气压下的盐化效应,研究了基于锂的锂离子电解质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号